Air Quality and Climate in California

Michael J. Kleeman

Department of Civil and Environmental

Engineering

UC Davis

Health Impacts of Air Pollution in California (per year)

Source: Recent Research Findings: Health Effects of Particulate Matter and Ozone Air Pollution, January 2004. California Air Resources Board (http://www.arb.ca.gov/research/health/fs/PM-03fs.pdf)

California's Major Air Basins

How Will Climate Change Affect Air Quality?

- Air pollution events occur when meteorology traps emissions close to the surface
- Climate change will affect multiple variables simultaneously
 - Temperature, relative humidity, wind speed, mixing depth, cloud cover, precipitation, etc.

Modeling Domains

Episode # 1: SoCAB September 7-9, 1993

- Extremely hot episode with inland temperatures greater than 35°C
- Elevated temperature inversion
- Upper winds from the northwest
- Surface winds light from the west during the day, stagnant at night

1hr-Average O3 Concentration (ppb) at 1500PST on Sept 9, 1993

Comparison to Measurements for Ozone:

1hr-Average O3 Concentration Difference (ppb) Caused by +5K With Constant RH

1hr-Average O3 ConcentrationDifference (ppb) Caused by+50% Increase in Mixing Depth

24hr-Average PM2.5 Concentration (μg m⁻³) on Sept 9, 1993

Comparison to Measurements for Particle Mass and Composition:

24hr-Average PM2.5 Concentration Difference (μg m⁻³) Caused By +5K

Equilibrium Dissociation Constant for Ammonium Nitrate

Trends for Background O3

Background O3 concentrations have increased over the past 100 years.

Projections by IPCC estimate future concentrations at ~60ppb.

Source: R. Vingarzan, "A review of ozone background levels and trends", Atmospheric Environment, 38: 3431-3442.

24hr-Average PM2.5 Concentration Difference (μg m⁻³) Caused By +5K With 60ppb Background O3

24hr-Average PM2.5 Concentration Difference (μg m⁻³) Caused By +5K With Constant RH and 60ppb Background O3

24hr-Average PM2.5 Concentration Difference (μg m⁻³) Caused By +50% Mixing Depth and 60ppb Background O3

Episode # 2: SoCAB September 23-25, 1996

- Moderate daytime temperatures reaching 25°C
- Elevated temperature inversion
- Surface winds light from the west during the day, stagnant at night

Predicted vs. Measured O3

Comparison to Measurements for Particle Mass and Composition:

O3 Response to Temperature and Humidity: September 25, 1996

PM2.5 Response to Temperature and Humidity: September 25, 1996

Episode # 3: SJV January 4-6, 1996

- Temperatures between 0-15°C
- Strong elevated temperature inversion at 200-500m
- Surface inversion with depth of ~30m forms at night
- Light surface winds with variable direction

Fresno

Modeled: black

Measured: blue

O3 and PM2.5 Concentrations

Concentration Difference Caused by +5K With 60ppb Background O3

e Hourly Average Ozone Mixing Ratio (ppb) Difference between Basecase and +5K Perturbation Case With 60ppb Background Ozone at 1500 PST, January 6, 1996

124-hour Average PM2.5 Concentration Difference between Basecase and +5K Perturbation Case With 60ppb Background Ozone

Concentration Difference Caused by +5K at Constant RH With 60 ppb Background O3

(e) Hourly Average Ozone Mixing Ratio (ppb) Difference between Basecase and +5K Perturbation With Constant RH and 60ppb Background Ozone at 1500 PST, January 6, 1996

(f) 24-hour Average PM2.5 Concentration Difference between Basecase and +5K Perturbation With Constant RH and 60ppb Background Ozone

Concentration Difference Caused by +50% Increase in Mixing Depth with 60ppb Background O3

(c) Hourly Average Ozone Mixing Ratio (ppb) Different between Basecase and +50% Mixing Depth Perturbation 1500 PST, January 6, 1996

(d) 24-hour Average PM2.5 Concentration Difference between Basecase and +50% Mixing Depth Perturbation

Pollutant Response to Meteorological Variables

Scenario

Conclusions

- Increased temperatures favor the formation of more ozone
- Increased temperature encourages evaporation of ammonium nitrate
- Increased background O3 produces higher nitrate concentrations
- Increased humidity favors the formation of ozone and ammonium nitrate
- Increased mixing depths provide more dilution of primary emissions
 - Lowers primary PM2.5
 - May increase ozone and secondary PM2.5

Conclusions

- Future stagnation events will be hotter
 - Likely produces more ozone

- Future stagnation events will have higher background O3 concentrations
 - Likely produces more ammonium nitrate

Acknowledgements

- California Air Resources Board Contract # 04-349
- Nehzat Motallebi (CARB)